Unique Car Sales
Subaru


Australian Classic Cars


Unique Cars and Parts on Facebook

Classic Cars for Sale
RSS Feed From Unique Cars and Parts Classifieds


Subaru 1000

Send This Page To A Friend
Subaru

Subaru 1000

1966 - 1969
Country:
Japan
Engine:
Air-cooled horizontally opposed 4-cylinder
Capacity:
977 cc
Power:
55/67 bhp @ 6000 rpm
Transmission:
4 spd. man
Top Speed:
n/a
Number Built:
n/a
Collectability:
2 star
Subaru 1000
Reviewed by Unique Cars and Parts
Our Rating: 2

Introduction



FUJI Heavy Industries was not one of the larger Japanese motor manufacturers of the 1960's. In 1966 they held the number six position in terms of volume, with a market share around 5 per cent, although in late 1968 they would fall behind the up-and-coming Honda powerhouse.

In real terms, Fuji was really a post-war company, reformed around the engineering experience of the Nakajima Aircraft Company who manuufactured the famous Zero fighter plane. It was following the war that production centererd around five divisions making Subaru cars, Rabbit scooters, railway rolling stock, bus bodies, mechanized agricultural aids and light aircraft.

Aimed at the domestic Japanese family car market (the car was not exported), the Subaru 1000 was available in two-door, four-door or station wagon body styles. Subaru were becoming well known for their flat-four water-cooled engine in the front driving the front wheels, in this case the engine developing 55 bhp net from 977cc.

The front brakes were inboard, with bimetallic drums. Suspension was independent all round by torsion bars. There was an optional Sports version with 67 bhp, disc front brakes and stiffer suspension.

Isn't That A Lloyd Arabella?



European motorists who looked hard could see a superficial resemblance to the Lloyd Arabella of 1959, introduced shortly before the demise of the German manufacturer along with Borgward who controlled them. The Arabella was a very similar front-drive saloon, using a water-cooled flat-four of 897cc. Of course this was the era when the Japanese were very adept at imitating others.

Like the Arabella, the Subaru engine was made mainly of aluminium castings, with wet cylinder liners and pushrod valve gear. A flat-four configuration was chosen for smoothness and a low bonnet line. It was mounted ahead of the front-wheel centre-line.

Both engines had a stroke of 60mm and they both used in-line valves operated by tubular aluminium pushrods with pressed-in steel ends. The difference was that on the Arabella unit (based, incidentally on the earlier 1100 Hansa) the camshaft was vertically above the crankshaft, whereas on the Subaru engine it was below, driven by a steel pinion meshing with an aluminium one. Both employed bath-tub combustion chambers.

Fuji Engineers Admit Similarities



At the time the Subaru engineers at Fuji admitted that they had investigated the Lloyd as research for their own car, but apart from the engine claimed only the front suspension was like that of the Arabella. Both employed double wishbones to leave the hub clear to take the drive through to the wheel, but the Subaru used leading torsion bars instead of coil springs, worked by the upper wishbone.

On the Subaru there was a self-supporting front sub-frame which included angled forward facing struts to support the front ends of the torsion bars and a kinked outrigger to support the top end of the telescopic damper which bolted at its lower end to the trailing side of the upper wishbone. The torsion bar formed the pivot pin for the upper wishbone with a quick adjustment for ride height. The lower wishbone was a steel pressing with a forged arm carrying the lower ball-joint bolted to it with slots allowing for camber adjustment. The rack and pinion steering was ahead of the hubs (on the Arabella it was behind).

At the rear there was a very novel device linking the two transverse torsion bars which meet in the centre of the car. In effect one reacted against the other through a compression coil spring. It was only a short spring with a stiff rate so that for large wheel movements it soon became coil bound after introducing roll stiffness to the initial movement. When both wheels moved together it did not function, the torsion bars both reacting against the fixed structure of their supporting tube which was clamped to the hull structure of the car.

Like at the front. the rear suspension was carried on a sub-frame which supported the upper ends of the telescopic dampers. The trailing arms gave virtually no camber change to the rear wheels between full bump and rebound. Centre-point steering was used, giving 3 turns from lock to lock on a 31ft 6in. turning circle. On the Sports version the ratio was raised to give only 2.9 turns.

Despite the light engine and the short front overhang of it, about 65 per cent of the unladen weight was carried on the front wheels. Some of this is because the spare wheel is mounted under the bonnet (Renault fashion) to leave the boot clear. The 8-gal fuel tank was located under the rear seat and there was claimed to be room for six sets of golf clubs in the boot - and while we have never had the opportunity to try we would put a wager on it that it was simply not possible - unless a Japanese golf set of the 1960's consisted of one wood, one iron and a putter contained in a 3 inch wide postage tube.

Clever Engineering And Quality Production



No pressure-limiting device was fitted to the rear brakes, but much smaller wheel cylinders were fitted to prevent premature rear wheel locking under heavy braking with a light load. For the drum set-up of the standard car (made by the Japanese Bendix company), 8 x 1. 75in. front drums use 15/16in. dia. wheel cylinders, while the 7 x 1 .4in. rear drums use 11 /16in. dia. wheel cylinders. This gave a hydraulic ratio of 65:35 in favour of the front - the same as the static weight distribution. The Sports model used 9in. dia. disc brakes at the front, with 1 in. dia. pistons. Neither version had a brake servo, but the drum brakes were of the duo-servo type with self-wrapping shoes.

The body structure was based on one-piece side pressings, welded up with a flat floor and roof pressing by multi-headed spot welders. The front grille and its surround were detachable to ease installation of the front sub-frame, which carried the engine as well. Each body was fully immersed for a priming coat of paint by electrolytic process, then sprayed with surfacer and two coats of top colour. Every car was taken for a road test round one lap of the factory track and one out of every 200 was checked more thoroughly for quality control.

Like the original Ford Taunus 12M (Cardinal), the Subaru used two cooling radiators, one permanently in circuit with the engine. The small auxiliary radiator formed the heater matrix. When the coolant temperature reached 82 deg C. the thermostat opened and brought the main radiator also into circuit. There was no engine driven fan (hence at least one reason for the high net power output for the engine size), an electric one cutting in to cool the auxiliary radiator only. This fan also formed the heater boost, unwanted hot air being bled into the low-pressure area of the right-hand wheel arch. It had a manual switch as part of the heater controls.

Drive from the engine passed back over the differential to the all-indirect gearbox via a quill shaft and then forward to the two-pinion differential. Ball-type constant velocity joints were used at both ends of each drive shaft with sliding splines near the outboard end. Bimetallic front drums (or discs in the case of the Sports model) were mounted round the outside of the inboard pot joint and the outboard joints and splines were contained in rubber bellows to protect them from road dirt.

Inside The Subaru 1000



Usually a steering column gearshift was fitted, but you could option the floor mounted gear change that came as standard on the sports version. The two-door cars had reclining front seats with four fixed angles of rake and a variable adjustment between each of them by a screw mechanism. The standard instrument panel comprised a speedometer and auxiliary gauges grouped under a single reflection shield, with switches positioned ergonomically each side of the wheel. On the Sports model there were three circular dials (including a rev counter) and a neat three-spoke, wood-rim steering wheel. Underneath the facia was a full-width parcel shelf and a deep trough behind the back seat formed useful additional stowage.

On The Test Track



For the Subaru Sports there was revised valve timing and lift, plus a pair of downdraught carburettors and a dual exhaust system, putting the net power output up from 55 bhp to 67 bhp. This made the sports version was very lively, and the deep throb to its exhaust added to the package. The engine was particularly sweet and mechanically very quiet, zipping up to 7,000 rpm easily, yet pulling well from low speed too. The ride was excellent yet the car felt taut and extremely stable.

During testing at the Subaru proving grounds the car displayed excellent stability during banking at 80 mph, and a high-speed stop showed the disc brake set-up to be well balanced and powerful, this being complimented by the excellent radial-ply tyres. On the steering pad virtually no front-drive effects at all, the steering remaining light and positive with power on or off. Lifting in mid-turn caused very little dive-in of the nose, and understeer with full throttle and a turn of lock in second gear was not at all excessive.

The standard model was, in comparison, more refined however also a little vague in its handling. The slower steering ratio and reduced grip of the cross-ply tyres showed immediately on the steering pad, and there was considerably more roll. The steering column gear shift worked well and seats on both cars were comfortable.

Surprisingly the handling of the standard car was just as good as the Sports in terms of front-drive effects (or lack of them in this case) and the Subaru was a class leader in this respect. This feat was achieved by the Subaru design team carefully balancing front and rear roll stiffnesses. The centre-point steering (whereby the swivel axis passed through the centre of the tyre contact patch with no offset) was responnsible for the light steering effort and also reduced suspension reaction to road shocks.

Maximum speed was claimed to be 84 mph with a standing quarter-mile in 19.7 sec. The Sports has a top speed of 93 mph and covered the standing quarter in 18.4 sec. Although the Subaru 1000 was not exported, it remained a piece of 1960's engineering worthy of close examination, not only because its specification was advanced and interesting, but because it behaved exceedingly well on the road and represented intelligent use of basic concepts and thorough development.

Visitor Rating:


Also see:


Subaru History
Subaru 1000 Technical Specifications
Subaru 1000 Brochure (Japanese)
Subaru Production 1958 - 1979
Reader Reviews page 0 of 0
Click here to add your review
There are currently 0 reviews to display.

 
back
Unique Cars and Parts - The Ultimate Classic Car Resource
next